Spiral wave attachment to millimeter-sized obstacles.

نویسندگان

  • Zhan Yang Lim
  • Barun Maskara
  • Felipe Aguel
  • Roland Emokpae
  • Leslie Tung
چکیده

BACKGROUND Functional reentry in the heart takes the form of spiral waves. Drifting spiral waves can become pinned to anatomic obstacles and thus attain stability and persistence. Lidocaine is an antiarrhythmic agent commonly used to treat ventricular tachycardia clinically. We examined the ability of small obstacles to anchor spiral waves and the effect of lidocaine on their attachment. METHODS AND RESULTS Spiral waves were electrically induced in confluent monolayers of cultured, neonatal rat cardiomyocytes. Small, circular anatomic obstacles (0.6 to 2.6 mm in diameter) were situated in the center of the monolayers to provide an anchoring site. Eighty reentry episodes consisting of at least 4 revolutions were studied. In 36 episodes, the spiral wave attached to the obstacle and became stationary and sustained, with a shorter reentry cycle length and higher rate. Spiral waves could attach to obstacles as small as 0.6 mm, with a likelihood for attachment that increased with obstacle size. After attachment, both conduction velocity of the wave-front tip and wavelength near the obstacle adapted from their pre-reentry values and increased linearly with obstacle size. In contrast, reentry cycle length did not correlate significantly with obstacle size. Addition of lidocaine 90 mumol/L depressed conduction velocity, increased reentry cycle length, and caused attached spiral waves to become quasi- attached to the obstacle or terminate. CONCLUSIONS Anchored spiral waves exhibit properties of both unattached spiral waves and anatomic reentry. Their behavior may be representative of functional reentry dynamics in cardiac tissue, particularly in the setting of monomorphic tachyarrhythmias.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wave Propagation in Excitable Media with Randomly Distributed Obstacles

We study the effect of small, randomly distributed obstacles on wave propagation in two-dimensional (2D) and 3D excitable media described by the Aliev–Panfilov model. We find that increasing the number of obstacles decreases the conduction velocity of plane waves and decreases the effective diffusion coefficient in the eikonal curvature equation. The presence of obstacles also increases the ind...

متن کامل

Numerical Study of Shock Wave Attenuation in Two-Dimensional Ducts Using Solid Obstacles: How to Utilize Shock Focusing Techniques to Attenuate Shock Waves

Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013), in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns ...

متن کامل

Spatial symmetry breaking determines spiral wave chirality.

Chirality represents a fundamental property of spiral waves. Introducing obstacles into cardiac monolayers leads to the initiation of clockwise-rotating, counterclockwise-rotating, and pairs of spiral waves. Simulations show that the precise location of the obstacle and the pacing frequency determine spiral wave chirality. Instabilities predicted by curves relating the action potential duration...

متن کامل

Gallium Phosphide IMPATT Sources for Millimeter-Wave Applications

The potentiality of millimter-wave (mm-wave) double-drift region (DDR) impact avalanche transit time (IMPATT) diodes based on a wide bandgap (WBG) semiconductor material, Gallium Phosphide (GaP) has been explored in this paper. A non-sinusoidal voltage excited (NSVE) large-signal simulation method has been used to study the DC and high frequency characteristics of DDR GaP IMPATTs dsigned to ope...

متن کامل

Common mechanism links spiral wave meandering and wave-front–obstacle separation

Spiral waves rotate either around a circular core or meander, inscribing a noncircular pattern. The medium properties determining the transition of meandering were found to be equivalent to those defining the transition from wave tip separation and attachment around the end of an unexcitable strip of thickness comparable to zero velocity wave-front thickness. The transition from circular to non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 114 20  شماره 

صفحات  -

تاریخ انتشار 2006